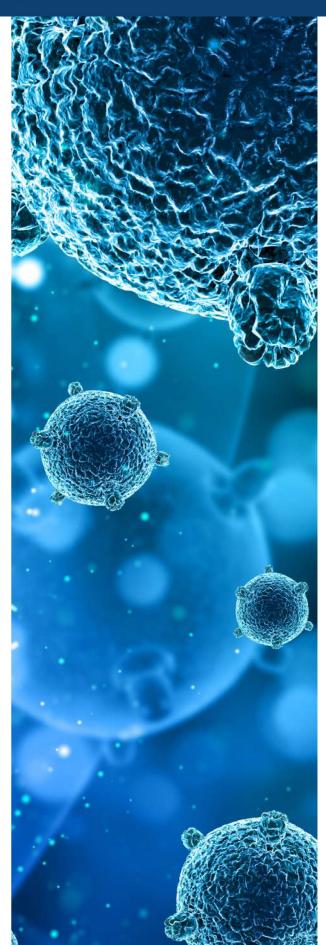


OBJETIVO:

Al concluir el diplomado, el estudiante será capaz de reconocer las bases bioquímicas y fisiológicas de la medicina mitocondrial; desarrollará la capacidad de mantener saludables las mitocondrias para mejorar el metabolismo, aumentar la longevidad y la calidad de vida en el paciente.

AVALES:

- Diploma de SEP (en trámite).
- A través del consejo comunitario popular de salud comunitario S.C. de la Facultad de estudios sociales de Temixco UAEM.


DIRIGIDO A:

- Médicos en general
- Químico farmacobiólogo
- Terapeutas y personal del área de salud en general
- Interesados en nuevos tratamientos basados en la nanomedicina y medicina mitocondrial.

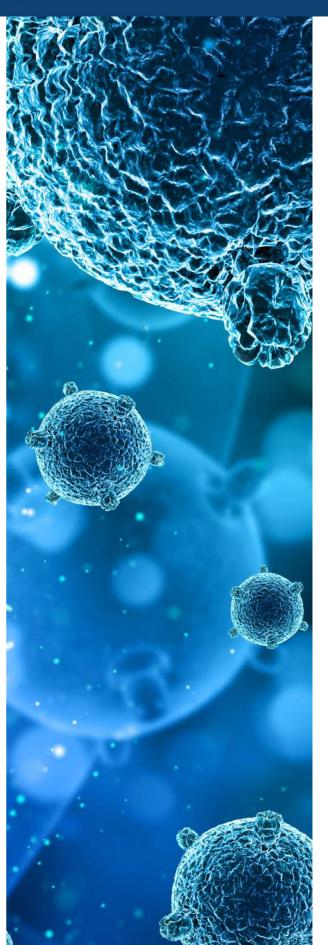
- 7.2.1.9. Uridina.
- 7.2.1.10. Ácido 3-hidroxibutírico.
- 7.2.1.11. β -Hidroxi β -Metilbutirato.
- 7.3. Mecanismos de acción.
- 7.3.1. Modulación del microbiota intestinal.
- 7.3.2. Actividad antiglicación.
- 7.3.3. Mejora de la microcirculación.
- 7.3.3.1. Función sexual.
- 7.3.4. Mejora de la función cerebral.
- 7.3.5. Aumento de la absorción de proteína.
- 7.3.6. Antiinflamación.
- 7.3.7. Efecto en la saciedad.
- 7.3.8. Disminución de la lipogénesis
- 7.3.9. Mejora del metabolismo de glucosa.
- 7.4. Ensayos clínicos.
- 7.4.1. Modulación de microbiota intestinal por metabolitos de cacao.
- 7.4.2. Efecto inhibitorio de los metabolitos del cacao sobre biomarcadores proinflamatorios.
- 7.4.3. Mejora de la microcirculación por metabolitos de cacao.
- 7.4.4. Aumento de los niveles de energía.
- 8. SINERGIA DE LOS NUTRACÉUTICOS
- 8.1.- POITEGREEN
- 8.2.- OL-ROM RESET.
- 8.3.- Complejo Biomineral Iónico.
- 8.4.- METAMICROBIOM-IA.

LA ESCUELA LATINOAMERICANA DE EDUCACIÓN EN SALUD INTEGRATIVA TIENE REGISTRO COMO CAPACITADOR EXTERNO EN LA STPS CON NÚMERO ELEO404266TO-0013.

VENTAJAS Y BENEFICIOS

Al estudiar el diplomado en medicina mitocondrial se logrará reconocer el valor de la mitocondria y su función al suministrar energía, por lo tanto, se analizará la importancia de mantenerse saludables y para lograrlo el estudiante desarrollará habilidades para:

- Identificar los componentes que interactúan en las funciones metabólicas.
- Identificar los alimentos y las nuevas tecnologías que mejoran el metabolismo.
- Comprender que es un metabolito, como utilizarlos para la prevención de enfermedades y la activación mitocondrial.

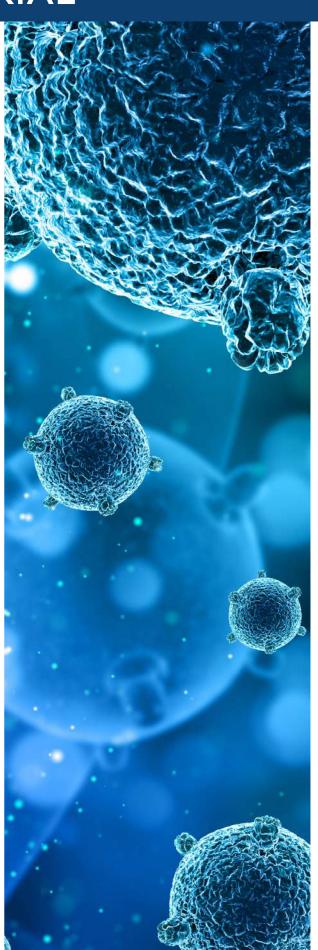

PERFIL DE EGRESO:

Al concluir el diplomado el estudiante reconocerá los elementos básicos del metabolismo celular y los nutrientes que tienen impacto en el proceso. Además, aplicará los principios de la metabolómica, nutrigenómica, proteómica, epigenética y genómica para el desarrollo de la medicina mitocondrial.

TEMARIO (DURACIÓN: 10 MESES)

1. Introducción a la química de la vida.

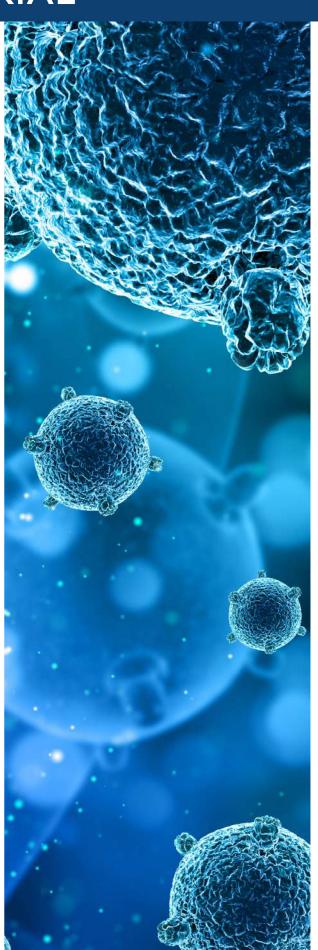
- 1.1. Unidad fundamental de la vida
- 1.2. La célula
- 1.2.1. Anatomía y fisiología
- 1.2.2. Composición atómica.
- 1.3. Mitocondria.
- 1.3.1. Introducción
- 1.3.2. Anatomía
- 1.3.3. Fisiología y fisiopatología
- 1.3.4. ADN y transcripción
- 1.3.5. Ciclo de Krebs



2. Bioquímica e interconectividad en la función de las biomoléculas.

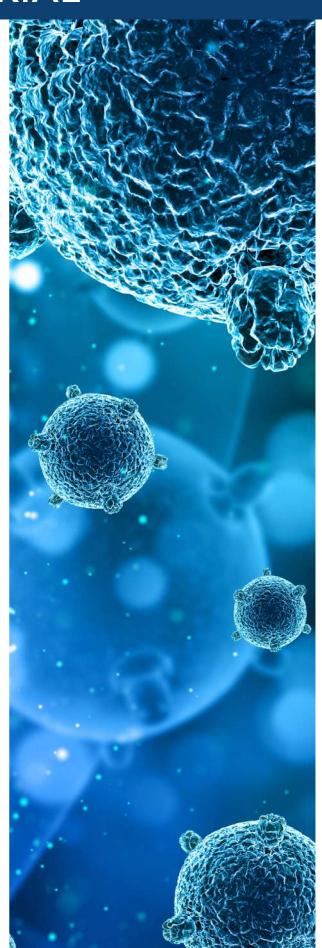
- 2.1. Agua.
- 2.2. Minerales.
- 2.3. Vitaminas.
- 2.4. Metabolitos.
- 2.5. Metabolitos y anabolismo.
- 2.6. Metabolitos y catabolismo.
- 2.7. Aminoácidos
- 2.8. Lípidos.
- 2.9. Ácidos nucleídos.
- 2.10. Interconectividad de las biomoléculas.
- 2.10.1. Las funciones vitales.
- 2.10.2. Las funciones de crecimiento.
- 2.10.3. Las funciones de ataque y protección
- 2.10.4. Las funciones de comparación y competencia.
- 2.10.5. Las funciones de trascendencia.
- 2.11. Metabolismo de las funciones de trascendencias y los alimentos funcionales
- 2.12. Tecnología y alimentos funcionales.

3. OL-ROM en Nanomedicina


- 3.1. Introducción.
- 3.1.1. Compuestos
- 3.1.1.1. Fruto y hojas de olivo
- 3.1.1.2. Hojas de romero
- 3.1.1.3. Metabolitos generados por fermentación
- 3.2. Compuestos bioactivos
- 3.2.1. Frutos del olivo y hojas.
- 3.2.1.1. Oleuropeina
- 3.2.1.2. Oleaceína
- 3.2.1.3. Tocoferol
- 3.2.2. Hidroxitirosol
- 3.2.3. Hojas de romero

3.2.3.1.	Ácido	carnósico	v carnosol
3.2.3.1.	Aciuo	Carriosico	v carriosor

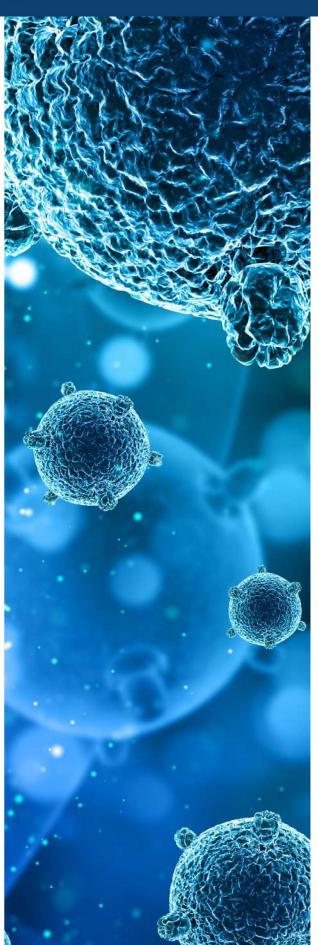
- 3.2.3.2. Ácido rosmarínico
- 3.2.3.3. Contenido flavanoide
- 3.3. Mecanismos de acción.
- 3.3.1. Efecto antioxidante.
- 3.3.2. Enzimas ALDH y producción de energía en mitocondria.
- 3.3.3. Detoxificación del hígado
- 3.3.4. Biogénesis mitocondrial: activación de Nrf2.
- 3.3.5. Metabolitos de aminoácidos.
- 3.3.5.1. L-Glutamina.
- 3.3.5.2. Serina
- 3.3.5.3. Metionina.
- 3.3.6. Antimelanoma.
- 3.3.6.1. Metabolitos eliminando específicamente las células cancerosas.
- 3.3.6.2. Metabolitos restringiendo la generación de energía mitocondrial en las células cancerosas.
- 3.3.7. Antidiabético.
- 3.3.8. Antiinflamación.
- 3.3.9. Colitis ulcerosa.
- 3.3.10. Neuroprotección.
- 3.3.11. Microbiota intestinal.
- 3.3.12. Expresión miRNA.
- 3.3.13. Protección de los telómeros
- 3.4. Sistemas farmacológicos de liberación controlada.
- 3.4.1. Entrega controlada de compuestos bioactivos.
- 3.5. Revisión de ensayos clínicos.
- 3.5.1. Capacidad antioxidante.
- 3.5.1.1. Evaluar la actividad antioxidante intramitocondrial (Prueba TBARS).
- 3.5.1.2. OL-ROM potencializando enzimas antioxidantes endógenas.
- 3.5.2. Fibroblastos y queratinocitos



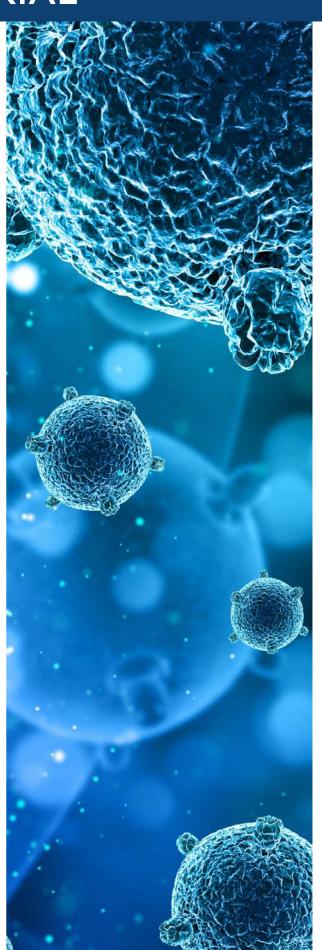
- 3.5.2.1. Fibroblastos y queratonocitos por toxicidad de superóxido.
- 3.5.2.2. Efectos de OL-ROM en la viabilidad de fibroblastos y queratinocitos.
- 3.5.3. Detección de daño en el ADN.
- 3.5.4. Evaluar la eficacia de OL-ROM en la reducción del daño del ADN.
- 3.5.5. Acción antiinflamatoria.
- 3.5.5.1. Actividad antiinflamatoria de los suplementos de OL-ROM durante el ejercicio crónico.

4. Activación de hormonas de crecimiento y mejora de la reproducción de POLTEGREEN.

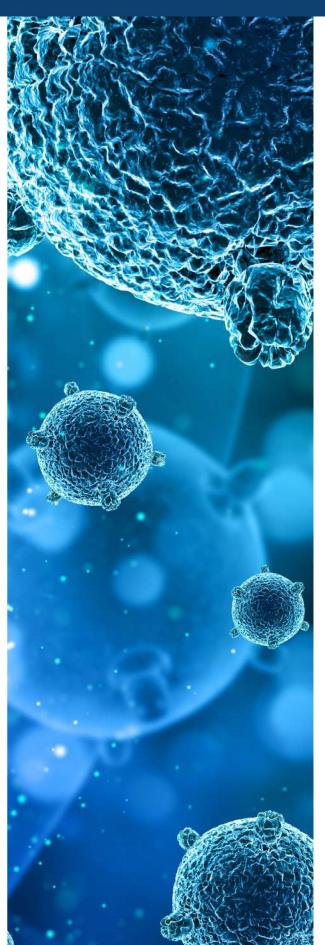
- 4.1. Influencia del clima en la hormona vegetal.
- 4.2. Hormona de crecimiento de planta de té verde.
- 4.3. POLTEGREEN potenciados.
- 4.3.1. Ciclo lunar / efecto.
- 4.3.2. Composición de bioactivos del té verde.
- 4.3.3. Beneficios para la salud del té verde.
- 4.4. Mecanismos de acción de los POLTEGREEN.
- 4.4.1. Anti-obesidad.
- 4.5. Termogénesis.
- 4.6. Balance de azúcar.
- 4.6.1. Reducción del azúcar en sangre circulante
- 4.6.2. Reducción inducida por polifenol del consumo de glucosa en el tejido.
- 4.6.3. Reducción de los resultados de glucosa en sangre en la quema de grasa.
- 4.6.4. Influencia de los polifenoles en la función hepática para mantener la homeostasis de la Glucosa.
- 4.6.5. Regula la expresión de genes implicados en la absorción de glucosa y la señalización de insulina.
- 4.7. Actividad antioxidante.
- 4.7.1. Efecto antioxidante a nivel celular del polifenol del té verde.



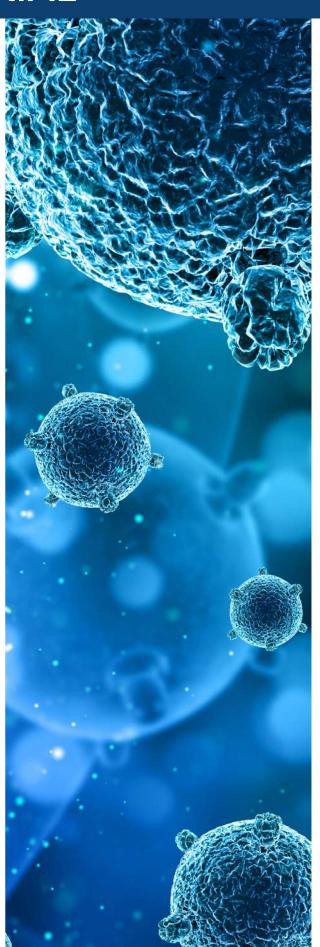
- 4.7.2. Efecto antioxidante a nivel molecular de los polifenoles del té verde.
- 4.8. Función del cerebro.
- 4.8.1. Polifenoles del té verde al rescate de defectos cerebrales.
- 4.8.2. Antidepresivo.
- 4.8.3. Actividad neurogénica.
- 4.8.4. Atenúa la excitotoxicidad.
- 4.8.5. Efecto neuro protector.


5. OL-ROM RESET.

- 5.1. Introducción.
- 5.1.1. Información general.
- 5.1.2. Composición.
- 5.1.2.1. Olivo.
- 5.1.2.2. Romero.
- 5.1.2.3. Frijol negro.
- 5.2. Compuestos bioactivos.
- 5.2.1. Olivo.
- 5.2.2. Oleuropeína.
- 5.2.3. Hidroxitirosol.
- 5.3. Mecanismos de acción
- 5.4. Equilibrio de glucosa en la sangre.
- 5.4.1. Inhibidor del alfa-amilasa.
- 5.4.2. Resistencia a la insulina.
- 5.4.3. Disminución de HbA1c.
- 5.5. Disminución de la presión arterial
- 5.6. Disminución de la presión arterial.
- 5.7. Efecto antiinflamatorio.
- 5.8. Efecto antioxidante.
- 5.9. Antiglicación.
- 5.10. Neuroprotección.
- 5.11. Relajación.
- 5.12. Ritmo circadiano
- 5.13. Sistema avanzado de entrega.



- 5.13.1. Entrega controlada de compuestos bioactivos.
- 5.13.2. Localización de OL-ROM RESET en el sistema celular.
- 5.14. Ensayos clínicos.
- 5.15. Capacidad antioxidante.
- 5.15.1. Efecto de OL-ROM RESET sobre las adipocinas, el hambre y la ansiedad, en hombres y mujeres con sobrepeso.
- 5.16. Medidas antropométricas.
- 5.16.1. Evaluación clínica de la eficacia de OL-ROM RESET en la pérdida de peso.
- 5.16.2. Evaluar la eficiencia de OL-ROM RESET para mejorar y mantener la pérdida de peso en humanos.
- 5.17. Colesterol y azúcar en la sangre.
- 5.17.1. Eficacia en los parámetros de lípidos en sangre.
- 5.18. Resistencia a la insulina y respuesta glucémica.
- 5.18.1. Efectos de OL-ROM RESET sobre el control de peso, la respuesta glucémica y colesterol LDL/HDL
- 5.19. Efecto antiinflamatorio.
- 5.19.1. Efectos del uso diario sobre los niveles de Proteína C Reactiva.
- 5.20. Presión arterial.
- 5.20.1. Efecto del uso diario sobre los niveles de presión arterial.
- 6. Complejo Biomineral Iónico.
- 6.1. Información general
- 6.1.1. Origen.
- 6.1.2. Composición
- 6.2. Características de los metabolitos del plancton y del plancton.
- 6.2.1. Metabolitos de plancton mecanismo de acción



- 6.5.1. Propiedades y Mecanismos de acción.
- 6.6. Selenio.
- 6.6.1. Propiedades y Mecanismos de acción.
- 6.7. Zinc.
- 6.7.1. Propiedades y Mecanismos de acción.
- 6.8. Cobre.
- 6.8.1. Propiedades y Mecanismos de acción.
- 6.9. Magnesio.
- 6.9.1. Propiedades y Mecanismos de acción.
- 6.10. Hierro.
- 6.10.1. Propiedades y Mecanismos de acción.
- 6.11. Usos de Complejo Biomineral Iónico.
- 6.11.1. Salud intestinal.
- 6.11.2. Retención de líquidos.
- 6.11.3. Diabetes.
- 6.11.4. Obesidad.
- 6.11.5. Presión arterial.
- 6.11.6. Inflamación y el dolor.
- 6.11.7. Osteoporosis.
- 6.11.8. Salud cerebral.
- 6.11.9. Depresión.
- 6.11.10. Migraña.
- 6.11.11. Audición.
- 6.11.12. Microbiota.
- 6.11.13. Equilibrio hormonal.
- 6.11.14. Regulación del pH.
- 6.11.15. Detoxificación.
- 6.11.16. Recuperación muscular.
- 6.12. Aplicaciones.
- 6.12.1. Terapia transdérmica de magnesio.
- 6.12.2. Baño de pies y remojo.
- 6.12.3. Cuidado de la cara y tratamiento del acné.
- 6.12.4. Tratamiento del cabello.
- 6.12.5. Cuidado oral y dental

6.12.6.	Biodisponibilidad y eficacia de Complejo		
	Biomineral Iónico en el control del peso.		
6.12.7.	El índice glicémico y el equilibrio lipídico.		
6.12.8.	Excreción de ácido neto y medición del		
	ph de la orina.		
6.12.9.	Eficacia de Complejo Biomineral Iónico e		
	el metabolismo del estrógeno y la		
	globulina fijadora de hormonas sexuales.		
6.12.10.	Equilibrio hormonal y mejoramiento de la		
fertilidad.			
6.12.11.	Anti-inflamación.		
6.12.12.	Función bioquímica del magnesio y		
	mecanismo de acción.		
6.13. Ensayos clínicos.			
6.14. Dosificación y biodisponibilidad.			
6.15. Segu	uridad del nutraceútico.		
6.16. Efec	tos secundarios y recomendaciones.		
7 8457884	ICDODIOM IA		
7. METAMICROBIOM-IA. 7.1. Introducción.			
	iencia de METAMICROBIOM-IA.		
7.1.2. Composición.			
7.1.2. Con 7.1.2.1.	La plantación de cacao más antigua del		
7.1.2.1.	mundo.		
7.1.2.2.	Tecnología de fermentación japonesa		
	tradicional.		
7.2. Com	npuestos bioactivos.		
	abolitos del cacao.		
7.2.1.1.	Glicina.		
	Propionato.		
7.2.1.3.	Ácido glutámico.		
7.2.1.4.	β-alanina.		
7.2.1.5.	β-Sitosterol.		
7.2.1.6.	•		
	Palmitoiletanolamida.		
7.2.1.8.			

